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Abstract
Based on the spin fluctuation mechanism we have succeeded in deriving
formulae for the magnetic entropy and the specific heat of itinerant electron
ferromagnets that cover the wide range of the temperature and the external field
strength. We show that it is necessary to include an extra term into the free
energy for a thermodynamically consistent treatment. We are able to predict
several new features on the temperature and the external field dependence,
an extra enhancement of the T -linear coefficient at low temperature and the
presence of a critical peak anomaly of the specific heat, for instance. They
result from terms proportional to the second-order temperature derivative of
the spontaneous magnetization. The presence of the terms is connected with
the Maxwell relation of thermodynamics.

1. Introduction

The enhancement of the heat capacity at low temperature and its suppression by the
external magnetic field of exchange-enhanced paramagnets as well as itinerant electron weak
ferromagnets already have a long history of intensive theoretical and experimental studies.
There has been a revival of interest recently in relation to low-dimensional itinerant electron
systems (Hatatani and Moriya 1995) and quantum critical phenomena (Hertz 1976, Millis
1993, Zülicke and Millis 1995, Ishigaki and Moriya 1996, Pfleiderer et al 1997).

In the 1960s most of the interests were focused on the temperature and the external field
dependence of the highly exchange-enhanced Landau Fermi liquids. Based on the random
phase approximation, low temperature behaviours were discussed by Doniach and Engelsberg
(1966), Brinkmann and Engelsberg (1968), and Berk and Schrieffer (1966). These studies are
now known as paramagnon theories. Within the same framework the external field suppression
of the specific heat was also discussed by Béal-Monod et al (1968), Béal-Monod (1981), Hertel
et al (1980), and Béal-Monod and Daniel (1983).
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Around the beginning of the 1970s, a novel approach, now called the self-consistent
renormalization (SCR) spin fluctuation theory, was proposed by Moriya and Kawabata (1973a,
1973b) for the explanation of the observed Curie–Weiss temperature dependence of the
magnetic susceptibility of weak itinerant electron ferromagnets. It is based on the decoupling
of nonlinear terms among spin fluctuation modes with various wavevectors. By the proper
self-consistent account of the feedback effect of the mode–mode coupling, these authors
succeeded in explaining many magnetic properties in the wide temperature range from the
low temperature limit to the paramagnetic phase through the transition temperature (Moriya
1985). The temperature dependence of the specific heat was treated by Murata and Doniach
(1972) for the first time from the simplified view of the mode–mode coupling idea. More
elaborate treatment was given by Makoshi and Moriya (1975), and Hasegawa (1975) based
on the SCR spin fluctuation theory. It was soon extended by Takeuchi and Masuda (1979)
to include the external field dependence in order to compare their experiments on Sc3In. For
nearly ferromagnetic metals, the quantitative analysis of the temperature dependence was given
by Konno and Moriya (1987).

The studies on the specific heat along this approach,however, had some shortcomings. The
SCR theory predicts a spurious discontinuous dip just above the critical point in the temperature
dependence (Makoshi and Moriya 1975). As for the external magnetic field dependence, no
attention has been paid to the Maxwell relation of the thermodynamics, though its importance
was recognized by Béal-Monod (1981) and Shioda et al (1988), for instance, in relation to the
field dependence of the specific heat of exchange-enhanced paramagnets.

The original SCR spin fluctuation theory also assumes that the zero-point quantum spin
fluctuation amplitude is rigid and will show neither temperature nor external magnetic field
dependence. The effect is therefore discarded from the beginning. The self-consistent
spectral change of spin fluctuation modes plays predominant roles in the Curie–Weiss like
temperature dependence of the magnetic susceptibility. It is not so clear why its effect on the
quantum amplitudes is neglected. It was not so easy to treat the magnetic field dependence
of various properties, the magnetic isotherm for instance. In the presence of the induced
magnetic moment, we have to deal with anisotropic spin fluctuation amplitudes. We are then
forced to study coupled integro-differential equations simultaneously (Lonzarich and Taillefer
1985). Because of this difficulty, the SCR theory is mainly concerned with properties on the
temperature axis of the phase diagram.

One of the present authors has shown that the spectral change also has a profound effect
on the quantum spin fluctuations. The quantum fluctuations cannot be neglected. We then
have to deal with the large amplitude fluctuations as the sum of both the thermal and quantum
components. Based on the idea of the total spin amplitude conservation, he has succeeded
in deriving various interesting theoretical consequences (Takahashi 1986, 1990, 1992, 1994,
1997a, 1997b) and Takahashi and Sakai (1995, 1998). They were supported by various later
experimental studies (Yoshimura et al 1988a, 1988b, Shimizu et al 1990, Nakabayashi et al
1992, Fujita et al 1995). As an example, the M–H curve is generally determined by the effect
of spin fluctuations. Even in the ground state with no thermal amplitude, it is determined
by the response of zero-point fluctuations to the applied magnetic field, in distinct contrast
with the Stoner–Wohlfarth single particle picture and the SCR theory. The positive mode–
mode coupling constant of FeSi observed by nonlinear magnetization measurements (Koyama
et al 2000) is consistent with this mechanism (Takahashi 1998), while the single particle
picture gives an inappropriate negative constant. Weak temperature dependence of the total
spin amplitude in partial ferromagnets has recently been confirmed in the one-dimensional
Hubbard chain by the exact numerical diagonalization method (Nakano and Takahashi 2004).
The effects of the quantum spin fluctuation amplitude have also been studied based on the
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Landau–Ginzburg model of the second-order phase transition (Solontsov and Wagner 1994,
1995, Kaul 1999, Semwal and Kaul 1999). It is not so obvious how the free energy expansion
is justified in terms of such large amplitude quantum fluctuations as were clearly observed by
polarized neutron scattering experiments on MnSi (Ziebeck et al 1982) throughout the wide
temperature range.

According to the quantum spin fluctuation theory mentioned above, the temperature
dependence of the specific heat was treated by Takahashi (1999) based on a free energy,
consistent with the conserved local spin amplitude. Although it is confined within the
paramagnetic phase with no external magnetic field, he can give an answer that resolves
the unfavourable temperature dependence of the specific heat just above Tc. As far as the
paramagnetic phase is concerned, it is based on the entropy that satisfies the Maxwell relation
of thermodynamics. It is extended to the case of FeSi, and compared well with experiments
(Takahashi et al 2000).

The purpose of the present paper is therefore to extend our previous study to the ordered
phase and to give the unified theoretical framework that enables us to treat the specific heat
in the global H –T or M–T phase diagram. Almost no efforts have appeared since the work
by Takeuchi and Masuda (1979) to overcome the above difficulties on the field dependence of
the specific heat of itinerant electron ferromagnets. We propose a way to extend our previous
free energy expression to the more general case in the presence of anisotropic spin fluctuation
amplitudes below Tc. Based on the free energy, we will give a consistency check of our
formalism by the Maxwell relation of thermodynamics.

In the next section, we propose a free energy due to the magnetic excitations. A brief
review of our spin fluctuation theory is also given. The general expressions of the magnetic
entropy and the specific heat are derived in section 3. Based on the formula, the temperature
and the external magnetic field dependence are discussed in sections 4 and 5, respectively. The
summary and some discussions are presented in the final section.

In what follows the uniform magnetization M is expressed in terms of the dimensionless
parameter σ in units of Bohr magneton µB per magnetic atom, and the wavevector dependent
external field H by h in energy units:

M = N0µBσ, h = 2µB H

where N0 is the number of magnetic atoms in the system. The static and uniform magnetic
susceptibility χ(0, 0) measured in units of 4µ2

B is in the present units given by

χ(0, 0)/N0 = σ/2h.

2. Magnetic free energy in the ordered phase

Let us first assume that the free energy consists of the sum of the following two contributions.

F(y, yz, σ, t) = Fsf (y, yz, σ, t) + Fsw(y, σ, t). (2.1)

The first term Fsf comes from the effect of spin fluctuations with finite damping given by

Fsf(y, yz, t) = 1

π

∑
q

∫ ∞

0
dω

[ω
2

+ T ln(1 − e−ω/T )
] �z

q

(�z
q)2 + ω2

+
2

π
T

∑
qsw<q

∫ ∞

0
dω ln(1 − e−ω/T )

�q

�2
q + ω2

+
1

π

∑
q

∫ ∞

0
dω

ω�q

�2
q + ω2

+ N0TA yσ 2/4 +
F (2.2)
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where �q and �z
q represent the damping constants. It consists of the sum of contributions

from both the longitudinal and the transverse fluctuations, and the Zeeman energy due to the
externally applied magnetic field. We assume that Fsf is a function of the inverse of the magnetic
susceptibilities, y and yz defined below, for transverse and longitudinal degrees freedom with
respect to the external field direction. The wavevector summation of the transverse component
starts from the lower bound qsw because of the presence of spin-wave modes. In our previous
study on the magnetic isotherm of the itinerant electron weak ferromagnets (Takahashi 2001),
we pointed out the significance of the cut-off effect in dealing with the transverse thermal spin
fluctuation amplitude below the critical temperature Tc. Since the quantum spin fluctuations
have widespread spectral widths in frequency space, spin-wave effects on them are not so
serious. Therefore only the explicit account of the effect on the thermal modes is taken in
this treatment. The third term of the transverse quantum component is thus given as the sum
throughout the whole of the Brillouin zone. The fourth term represents the Zeeman energy
−M H expressed in terms of y and σ . The last correction term 
F is discussed later in this
section.

The above form of the free energy assumes the presence of highly exchange-enhanced
spin fluctuation modes. Their energy spectrum, given in terms of the imaginary part of the
dynamical magnetic susceptibility, is well approximated by the double Lorentzian form in the
frequency and the wavevector space,

Im χα(q, ω) = χα(q, 0)
ω�αq

ω2 + �αq
2 (2.3)

where α represents the parallel and perpendicular polarization to the induced moment. The
wavevector dependent static susceptibility χα(q, 0) and the damping constant �αq are given by

χα(q, 0) = χα(0, 0)

1 + q2/κ2
α

= N0

2TA

1

yα + x2
, (x = q/qB)

�αq = �0q(q2 + κ2
α) = 2πT0x(yα + x2)

TA = N0q2
B/2χα(0, 0)κ2

α, T0 = �0q3
B/2π, yα = κ2

α/q
2
B .

(2.4)

The inverse squared correlation length κ2
α is proportional to χ−1

α (0, 0) defined by the second-
order derivatives of the free energy in the parallel and perpendicular moments, δM‖ and M⊥,
i.e.

N0

2χ‖(0, 0)
= ∂h

∂σ
= TA y‖ ∝ ∂2 F

∂δM2
‖
,

N0

2χ⊥(0, 0)
= h

σ
= TA y⊥ ∝ ∂2 F

∂M2
⊥
.

(2.5)

The constant parameter TA introduced above stands for the measure of the distribution of
N0/χα(q, 0) in wavevector space, since the lower and the upper bounds of N0/χα(q, 0) are
given by yα � 1 for q = 0 and 2TA(1 + yα) � 2TA for q = qB , respectively, while
T0 characterizes the spectral width in frequency space. The zone-boundary wavevector is
denoted by qB . The spin fluctuation amplitudes become anisotropic when the static magnetic
moment is present. The effect is taken into account in terms of reduced anisotropic inverse
susceptibilities yα. Throughout the paper, the magnetic moment and the field are assumed to
be along the z-axis. The subscript α (superscript for �) for the parallel modes are, therefore,
denoted by yz for instance, while those for transverse modes are suppressed.

In terms of the imaginary part of the dynamical susceptibility, the local spin amplitude on
the i th lattice site can be given as the sum of thermal and quantum (zero-point) amplitudes as
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follows (in the paramagnetic phase).

〈S2
i 〉 = 〈S2

i 〉T (y, yz, t) + 〈S2
i 〉Z (y, yz)

〈S2
i 〉T (y, yz, t) = 2

N2
0

∑
qα

∫ ∞

0

dω

π
n(ω) Im χα(q, ω)

= 3T0

TA
[2A(y, t) + A(yz, t)]

〈S2
i 〉Z (y, yz) = 1

N2
0

∑
qα

∫ ∞

0

dω

π
Im χα(q, ω)

= 〈S2
i 〉Z (0, 0)− 3T0

TA
cz(2y + yz)

where t = T/T0 is the reduced temperature and cz is a positive numerical constant of the order
of unity. The thermal amplitude A(y, t) is defined by

A(y, t) =
∫ 1

0
dx x3[ln u − 1/2u − ψ(u)], u = x(y + x2)/t . (2.6)

The Bose factor and the digamma function are, respectively, denoted by n(ω) and ψ(u).
The second term in (2.1) represents the contribution from the spin-wave excitations. It is

given by

Fsw(y, σ, t) = T
∑

q<qsw

ln(1 − e−βωq ) + N0TA[yη1(σ, t) + η0(σ, t)]

ωq = TAσ y + D(σ )q2.

The first term of the spin-wave frequency ωq represents the external magnetic field h. Since
our free energy is a function of y and σ , we use this notation. The functions η1(σ, t) and
η0(σ, t) are variables introduced for the Legendre transformation to define the free energy as a
function of σ instead of h. The spin-wave modes are confined within the small region around
the origin of the wavevector space. The upper cut-off vector is denoted by qsw.

To find the minimum of the free energy, we need its variation against the parameters σ
and y. For the spin-wave modes, it is given by

δFsw = TA

∑
q<qsw

n(ωq)

[
σδy +

(
y +

1

TA

∂D(σ )

∂σ
q2

)
δσ

]

+ N0TA[η1(σ )δy + yη′
1(σ )δσ ] + N0TAη

′
0(σ )δσ

= N0[6T0 Asw(y, σ, t) + TAη1(σ )]δy

+ N0TA

{
1

N0

∑
q<qsw

(
y +

1

TA

∂D

∂σ
q2

)
n(ωq) + yη′

1(σ ) + η′
0(σ )

}
δσ.

The first term represents the thermal spin-wave amplitude for the transverse modes. The
function Asw is defined by

Asw(y, σ, t) = TAσ

6N0T0

∑
q<qsw

n(ωq) = TAσ

2T0

∫ xc

0
dx

x2

eβωq − 1
, (xc = qsw/qB).

In the long-wavelength limit whereβωq � 1 is satisfied, the integrand of the above wavevector
integration is given by

TAσ

2T0

x2

eβωq − 1
� TATσ

2T0ωq
= tTAσ x2

2[TAσ y + D(σ )q2]
= t

2

x2

y + [D(σ )q2
B/TAσ ]x2

.
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If we assume the relation D(σ )q2
B/TAσ � 1, it is easy to see that it smoothly tends to the long-

wavelength limit, x3/2u, of the integrand of the transverse thermal spin fluctuation amplitude
A(y, t) in (2.6). It is reasonable for us to assign this as the transverse spin amplitude due to spin-
waves. We assume the above form of the spin-wave stiffness constant throughout this paper.

Now against the variations of σ and y, the change of the free energy δF is given by

δ(F/N0) = TA

{
3

T0

TA
[2At(y, t) + A(yz, t)− cz(2y + yz)] +

σ 2

4
+ η1(σ )−
〈S2

i 〉tot

}
δy

+ 3T0

[
A(yz, t)− cz yz − TA

9T0

〈S2

i 〉tot

]
δ
yz

+ TA

[
1

N0

∑
q<qsw

(y + x2)n(ωq) + yη′
1(σ ) + η′

0(σ )

]
δσ

+ TA yσδσ/2 + δ(
F1/N0) (2.7)

where 
yz = yz − y. We have introduced 
〈S2
i 〉tot and the transverse thermal amplitude

At(y, t) by


〈S2
i 〉tot = 〈S2

i 〉tot − 〈S2
i 〉Z (0)

At (y, t) = Asw(y, t) + Ac(y, t)

Ac(y, t) =
∫ 1

xc

dx x3[ln u − 1/2u − ψ(u)].

Due to the presence of the spin-wave modes, the transverse amplitude has to be modified in the
long-wavelength limit. The above free energy expression is the straightforward generalization
of our previous proposal for the paramagnetic case to the ordered phase that can afford the
presence of the external magnetic field. The correction term is also extended as follows.


F(σ, t) = − 1
3 N0TA〈S2

i 〉tot(2y + yz) +
F1(σ, t).

Its variation is given by

δ
F(σ, t) = −N0TA〈S2
i 〉tot

1
3 (3δy + δ
yz) + δ
F1(σ, t).

The first term of
F corresponds to the correction introduced by our previous study. The last
new term
F1 results from the appearance of the spontaneous moment. This term is necessary
when we make sure that the Maxwell relation is justified in general cases under the presence
of the finite induced magnetic moment. The parameter 〈S2

i 〉tot has the same meaning as in the
paramagnetic phase, i.e. the squared total spin amplitude.

It is reasonable to assume that the free energy is an extremum against the variation of y
just like in the paramagnetic phase. We also impose the condition that the σ -derivative of the
free energy agrees with the external magnetic field in consistence with the thermodynamic
equation of state between H and M . From the σ -dependence of
yz , the above two conditions
lead to the following two equations:


〈S2
i 〉tot = σ 2

4
+

3T0

TA

[
2At(y, t) + A(yz, t)− cz(2y + yz)

]
+ η1(σ ) (2.8){

2T0

TA

[
A(yz, t)− At(y, t)− cz
yz

] − 1

3

[
σ 2

4
+ η1(σ )

]}
∂
yz

∂σ
+

1

N0TA

∂
F1

∂σ
= 0. (2.9)

Equation (2.9) can also be rewritten in the following form:

λ(σ, t) = − 1

N0TA ∂
yz/∂σ

∂
F1

∂σ

= 2T0

TA
[A(yz, t)− At(y, t)− cz
yz] − 1

3

[
σ 2

4
+ η1(σ )

]
. (2.10)
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For the spin-wave modes, let us assume that the following condition is satisfied with respect
to the σ variation:

1

N0

∑
q<qsw

n(ωq)(y + x2) + yη′
1(σ ) + η′

0(σ ) = 0. (2.11)

It will be replaced by the following two conditions:

1

N0

∑
q<qsw

n(ωq) = 6T0

TAσ
Asw = −∂η1(σ, t)

∂σ
(2.12)

1

N0

∑
q<qsw

x2n(ωq) = 3
∫ xc

0
dx

x4

eσTA(y+x2)/tT0 − 1
= −∂η0(σ, t)

∂σ
. (2.13)

If the above conditions are all satisfied, the following well-known thermodynamic relation is
derived as the minimum condition of the free energy:

1

N0

∂F

∂σ
= TA yσ = h

2
.

Equation (2.8) represents the conservation of the total spin amplitude. It poses the implicit
relation between the two functions, y and yz , and the variable σ . It is a first-order differential
equation, since y and yz are related to each other by

yz(σ, t) = y(σ, t) + σ
∂y(σ, t)

∂σ
(2.14)

from their definitions (2.5). As the solution we can obtain the inverse magnetic susceptibility y
as a function of σ . On the other hand, the free energy correction
F1 is given as a function of
σ with the use of (2.9) or (2.10). Two spin-wave related functions η0 and η1 are also obtained
by solving (2.12) and (2.13). As their initial conditions, we can choose them to vanish at
σ = σ0(t). Then we obtain (σ −σ0)-linear solutions around σ = σ0. In our previous study on
the magnetic isotherm, we showed that the spin-wave effect is generally very small. Therefore
they are neglected in this study. The following discussions are based on the above form of the
free energy expression. All the parameters, y, yz , and σ , are assumed to be determined by the
above stability conditions.

2.1. The σ -dependence of the correction term

In order to find the explicit form of the free energy correction
F1, let us study itsσ -dependence
in some particular temperature ranges below.

• In the ground state at T = 0 K. In this case, the σ -dependence of y(σ, 0) and yz(σ, 0) is
given by

y(σ, 0) = y10(σ
2 − σ 2

s ), yz(σ, 0) = 2y10σ
2
s + 2y10(σ

2 − σ 2
s ) (2.15)

where y10 represents the ratio of the spin fluctuation parameters given by 60cz y10 = TA/T0

(Takahashi 2001). Because the thermal amplitudes A(y, t) and A(yz, t) vanish identically,
the σ -dependence of 
F1 can be simply determined as follows. From the definition
of (2.10) the parameter λ(σ, t) is given by

λ(σ, 0) = −2T0

TA
cz
yz − 1

12
σ 2.
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The correction
F1 is then determined by solving the equation

1

TA

∂

∂σ

(

F1

N0

)
=

(
2T0

TA
cz
yz +

1

12
σ 2

)
∂
yz

∂σ

= (
1

15 + 1
12

)
[(σ 2 − σ 2

s ) + σ 2
s ](4y10σ)

= 3

5
y10σ(σ

2 − σ 2
s ) +

3

20
σ 2

s
∂
yz

∂σ
.

The solution is given by


F1(σ, 0) = 3
20 N0TAσ

2
s 
yz + 3

20 N0TA y10(σ
2 − σ 2

s )
2. (2.16)

• In the paramagnetic phase for T > Tc. The following expansions for y and yz are justified
in the paramagnetic phase in the small σ 2 limit.

y(σ, t) = y0(t) + y1(t)σ
2 + · · · , yz(σ, t) = y0(t) + 3y1(t)σ

2 + · · ·
where y1(t) is defined by

y1(t) = cz y10

cz − A′(y0(t), t)
.

The partial y-derivative of A(y, t) is hereafter denoted by A′(y, t). By expanding λ(σ, t)
in powers of σ 2, 
F1(σ, t) can be determined by solving

1

N0TA

∂
F1(σ, t)

∂σ
=

{
−2T0

TA
[A(yz, t) − A(y, t)− cz
yz] +

σ 2

12

}
∂
yz

∂σ

� −
{

2T0

TA
[A′(y0, t)− cz]
yz − σ 2

12

}
4y1(t)σ

= 4σ 3 y1(t)
(

1
15 + 1

12

) = 3
5 y1(t)σ

3.

The solution is given by


F1(σ, t) � 3
20 N0TA y1(t)σ

4 + · · · , λ(σ, t) = − 3
20σ

2 + · · · .
The lowest-order term vanishes at the critical temperature, t = tc, because y1(tc) = 0.

• In the ordered phase for T < Tc. In the presence of the spontaneous magnetic moment
σ0(t), the σ 2-dependence of y and yz is given by

y(σ, t) = y1(t)[σ 2 − σ 2
0 (t)],

yz(σ, t) = y(σ, t) + 2y1(t)σ
2 = 2y1(t)σ

2
0 (t) + 3y(σ, t)

= yz0(t) + 3y(σ, t).

In the small y limit, the following expansion of the parameter λ(σ, t) is well justified:

λ(σ, t) = 2T0

TA

[
A(yz, t) − At(y, t)− cz(yz − y)

] − σ 2

12
− η1

3

= λ0(t) + (σ 2 − σ 2
0 )

×
{

2T0

TA
[3A′(yz0, t)− A′

t(0, t)− 2cz]y1(t)− 1

12

}
+ · · ·

where λ0(t), the value in the absence of the magnetic field, is defined by

λ0(t) = 2T0

TA

[
A(yz0, t)− At(0, t)− cz yz0(t)

] − σ 2
0 (t)

12
. (2.17)



Field dependence of the heat capacity of itinerant electron ferromagnets 4513

In the paramagnetic phase, λ0(t) vanishes identically because σ0(t) = 0 and therefore
yz0(t) = 0 holds there. The correction term 
F1(σ, t) is determined by solving

1

N0TA

∂
F1

∂σ
= −4y1(t)σ (σ

2 − σ 2
0 )

×
{

2T0

TA
[3A′(yz0, t)− A′

t(0, t)− 2cz]y1(t)− 1

12

}
− λ0(t)

∂
yz

∂σ
+ · · · .

Its solution is given by


F1(σ, t) = −N0TAλ0(t)
yz + N0TA y1(t)[σ
2 − σ 2

0 (t)]
2

×
{

1

12
− 2T0

TA
[3A′(yz0, t)− A′

t(0, t)− 2cz]y1(t)

}
. (2.18)

The above form of the free energy correction is quite general. It tends to the ground state
expression in the t = 0 limit. For instance, the parameter λ0(t) is, in this limit, given by

λ0(0) = 4T0

TA
cz y10σ

2
s − 1

12
σ 2

s = 3

20
σ 2

s .

It also agrees with the expression in the paramagnetic phase.
• At the critical temperature,T = Tc. Owing to the critical y-dependence of the thermal

amplitude A(y, t) � A(0, t)− π t
√

y/4, the parameter λ(σ, tc) can be given by

λ(σ, tc) = −2πT0tc
4TA

(
√

yz − √
y)− σ 2

12
.

If we take the σ 4-dependence of y and yz (Takahashi 2001) into account,

y(σ, tc) = ycσ
4, yz(σ, tc) = 5ycσ

4, yc =
[

20cz y10

π(2 +
√

5)tc

]2

(2.19)

we are led to the following σ -dependence:

λ(σ, tc) � −
[

2πT0tc
4TA

(
√

5 − 1)
√

yc +
1

12

]
σ 2

= −
[
(
√

5 − 1)

6(2 +
√

5)
+

1

12

]
σ 2 =

√
5

4(2 +
√

5)
σ 2.

From the above result, 
F1(σ, t) is given by

1

N0TA

∂
F1(σ, tc)

∂σ
= −λ(σ, tc)

∂
yz

∂σ
= 4

√
5

(2 +
√

5)
ycσ

5 + · · ·


F1(σ, tc) = 2
√

5

3(2 +
√

5)
N0TA ycσ

6.

To summarize, we have extended our paramagnetic form of the free energy correction
to the general cases where finite static magnetization is present in the system, because of the
presence of the spontaneous moment below Tc and/or due to the application of the external
magnetic field. We have found that an additional correction term,


F1(σ, t) = −N0TAλ0(t)
yz(σ, t) + · · · , (2.20)

is necessary. In the following sections, we will show how the above correction will give rise
to new behaviours of the entropy and the specific heat in their temperature and magnetic field
dependence that were disregarded in previous studies.
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3. Magnetic entropy and specific heat

The temperature dependence of our free energy comes from two origins: the direct dependence
related to the Bose factor, and the implicit dependence through the parameters y(σ, t) and
yz(σ, t). We assume that the t- and σ -dependence of y(σ, t) and yz(σ, t) are determined by
the following conditions: the stability of the free energy against the variation of y, and the
validity of the thermodynamic relation derived from the σ -derivative. Under these constraints,
the magnetic entropy can be obtained as the temperature derivative of the free energy (2.1) as
follows.

Sm(σ, t)/N0 = −6
∫ 1

xc

dx x2
[
ln

√
2π − u + (u − 1/2) ln u − ln�(u)

]

+ 6
∫ 1

xc

dx x2u

[
ln u − 1

2u
− ψ(u)

]

− 3
∫ 1

0
dx x3

[
ln

√
2π − uz + (uz − 1/2) ln uz − ln�(uz)

]

+ 3
∫ 1

0
dx x2uz

[
ln uz − 1

2uz
− ψ(uz)

]

− 1

N0

∑
q<qsw

[
ln(1 − e−βωq )− βωq n(ωq)

]

− TA

T0

(
y
∂η1

∂ t
+
∂η0

∂ t

)
+
Sm(σ, t)/N0 (3.1)

where �(u) is the gamma function of the argument u.
The above expression is an extension of our previous formula in the paramagnetic phase

(Takahashi 1999). The last specific term 
Sm of this treatment comes from the free energy
correction 
F1. We can associate its σ - and t-dependence with those of λ(σ, t). If we note
the relation δ
yz = ∂(
yz/∂ t)δt in (2.7) for the explicit t-dependence, it is easy to see that

Sm(σ, t) should be defined by

T0
Sm(σ, t) = −∂
F1(σ, t)

∂ t
− N0TAλ(σ, t)

∂
yz(σ, t)

∂ t
. (3.2)

On substitution of (2.20), we obtain


Sm(σ, t) = 
Sm(σ0, t) + δ
Sm(σ, t)


Sm(σ0, t) = N0
TA

T0

dλ0(t)

dt
yz0(t)

(3.3)

δ
Sm(σ, t) � N0
TA

T0

[
dλ0(t)

dt

yz(σ, t)− δλ(σ, t)

dyz0(t)

dt

]
(3.4)

where δλ = λ(σ, t)−λ(σ0, t). In the absence of the external field, the temperature dependence
of the entropy correction is evaluated by (3.3), since
yz = yz0(t) and δλ = 0 hold for h = 0.
The field dependence is given by (3.4).

The temperature dependence of the specific heat is now derived as the t-derivative of the
entropy in (3.1). It is shown below explicitly.
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Cm

N0t
= 6

t

∫ 1

xc

dx x2u
{−1 − 1/2u + uψ ′(u)

}
+

3

t

∫ 1

0
dx x2uz

{−1 − 1/2uz + uzψ
′(uz)

}
− 3

(
2
∂At(y, t)

∂ t

∂y

∂ t

∣∣∣∣
h

+
∂A(yz, t)

∂ t

∂yz

∂ t

∣∣∣∣
h

)

+ 3

(
σTA

tT0

)2 ∫ xc

0
dx x2 eβωq (y + x2)2

(eβωq − 1)2

(
1

t
− 1

σ

∂σ

∂ t

∣∣∣∣
h

)

− TA

T0

(
∂y

∂ t

∂η1

∂ t
+ y

∂2η1

∂ t2
+
∂2η0

∂ t2

)
+

Cm

N0t

Cm

t
= ∂
Sm

∂ t
.

(3.5)

We are now ready to discuss the temperature and the external field dependence of the entropy
and the specific heat.

4. Temperature dependence of the entropy and specific heat

For the numerical analysis of the temperature dependence, let us rewrite our expression of

Sm in (3.3) with the use of the explicit t-dependence of the parameter λ0(t) defined in (2.17).
The t-derivative of λ0(t) is given by

TA

T0

dλ0(t)

dt
= 2[A′(yz0, t)− cz]

dyz0

dt
− 5cz y10

dσ 2
0

dt

+ 2

[
∂A(yz0, t)

∂ t
− ∂At(0, t)

∂ t

]

= −6
∂At(0, t)

∂ t
− 15cz y10

dσ 2
0 (t)

dt
. (4.1)

The last line is derived with the use of the following partial t-derivative of the amplitude sum
rule (2.8), i.e.,

2
∂At(0, t)

∂ t
+
∂A(yz0, t)

∂ t
+ [A′(yz0, t) − cz]

dyz0

dt
+ 5cz y10

dσ 2
0

dt
= 0. (4.2)

In the same way, (4.1) can take the different form

TA

T0

dλ0(t)

dt
= 3

∂A(yz0, t)

∂ t
+ 3[A′(yz0, t)− cz]

dyz0

dt
. (4.3)

On substitution of either (4.1) or (4.3) into (3.3), the entropy correction 
Sm can be given in
two equivalent forms,


Sm

N0
= −3yz0

[
2
∂At(0, t)

∂ t
+ 5cz y10

dσ 2
0 (t)

dt

]
(4.4)

= 3yz0

{
∂A(yz0, t)

∂ t
+ [A′(yz0, t) − cz]

dyz0

dt

}
. (4.5)

From the straightforward t-differentiation of (4.4), the specific heat correction 
Cm is
given by


Cm

N0t
= −3

[
2
∂At(0, t)

∂ t

dyz0

dt
+ 2yz0

∂2 At(0, t)

∂ t2
+ 5cz y10

d

dt

(
yz0

dσ 2
0 (t)

dt

)]
(4.6)
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in terms of thermal transverse spin fluctuation amplitude At(0, t). From (4.5) it is also
represented by


Cm

N0t
= 3yz0

[
∂2 A(yz0, t)

∂ t2
+ A′′(yz0, t)

(
dyz0

dt

)2

+ 2
∂A′(yz0, t)

∂ t

dyz0

dt

]

+ 3
∂A(yz0, t)

∂ t

dyz0

dt
+ 3[A′(yz0, t)− cz]

[(
dyz0

dt

)2

+ yz0
d2 yz0

dt2

]
(4.7)

in terms of longitudinal amplitudes A(yz0, t). On substituting these results in (3.5), the
temperature dependence of the magnetic specific heat is finally given as the sum of two
contributions,

Cm

N0t
= Cm0

N0t
+

Cm1

N0t
(4.8)

Cm0

N0t
= 6I + 3Iz

I = 1

t

∫ 1

xc

dx x2u[−1 − 1/2u + uψ ′(u)]

Iz = 1

t

∫ 1

0
dx x2uz[−1 − 1/2uz + uψ ′(uz)]

(4.9)

Cm1

N0 t
= −3

∂A(yz0, t)

∂ t

∂yz0

∂ t
+

Cm

N0t

= −3

{
2
∂At(0, t)

∂ t
+
∂A(yz0, t)

∂ t

}
dyz0

dt
− 6yz0

∂2 Ac(0, t)

∂ t2

− 15cz y10

(
dσ 2

0

dt

dyz0

dt
+ yz0

d2σ 2
0

dt2

)
. (4.10)

We have neglected spin-wave contributions, the second-order T -derivative of Asw for instance,
by assuming them to be very small. The first term of (4.10) reduces to the similar isotropic
expression in the paramagnetic phase. The rest of the terms vanish because of the absence
of finite σ 2

0 and yz0 there. Equation (4.10) is therefore regarded as a natural extension of
our paramagnetic result to the ordered phase. The term Cm1 is also given by the following
equivalent form:

Cm1

N0 t
= 3yz0

[
∂2 A(yz0, t)

∂ t2
+ A′′(yz0, t)

(
dyz0

dt

)2

+ 2
∂A′(yz0, t)

∂ t

dyz0

dt

]

+ 3[A′(yz0, t)− cz]

[(
dyz0

dt

)2

+ yz0
d2 yz0

dt2

]
. (4.11)

The presence of the second-order t-derivative terms in (4.10) and (4.11) is one of the distinct
results derived first in this study. In contrast, only the first-order derivative dM/dT appears in
previous studies based on the SCR theory (Makoshi and Moriya (1975) for instance).

In order to derive numerical results, we need to know the t-dependence of σ0(t), yz0(t),
and their t-derivatives. These quantities can be evaluated according to our previous study on
the magnetic isotherm of itinerant electron magnets (Takahashi 2001). See appendix A for
a brief explanation of how to evaluate them. We show in figure 1 numerical results of the
t-dependence of Cm/N0t for several values of the parameter tc in a wide temperature range.
We particularly notice two characteristic features shown in the figure: the rapid enhancement
in the low temperature limit and the appearance of the peak around the critical temperature.
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Figure 1. Temperature dependence of the specific heat Cm/N0 t for tc = 0.005, 0.01, and 0.05
from the top, respectively.

We show below the temperature dependence of them in more detail, paying particular
attention on the regions in the low temperature limit as well as around the critical point.

4.1. In the low temperature limit

The first term Cm0/N0t in (4.8) dominates in the low temperature limit. Actually, in this limit,
the longitudinal part Iz in (4.9) shows the well-known logarithmic enhancement,

Iz � 1
12 ln(1 + 1/yz0(0)),

as the longitudinal inverse magnetic susceptibility yz0(0) becomes very small. For the
transverse part, we have to take account of the cut-off effect for the lower bound of the
wavevector integration due to the presence of spin-wave modes. It is approximated by

I � 1

6

∫ 1

xc

dx
x2

x(y + x2)
= 1

12
ln

(
1 + y

y + x2
c

)
= 1

6
ln

(
1

xc

)
,

for y = 0 in the absence of the external field. The first term Cm0/N0t therefore gives the
enhancement,

Cm0/N0t � ln
1

xc
+

1

4
ln

1

yz0
� 3

2
ln

1

σs
(4.12)

as we approach the magnetic instability point, σs → 0.
On the other hand, among terms of Cm1/N0t in (4.11), only the terms proportional to the

second-order t-derivative of A(yz0, t) and yz0(t) remain finite in this limit as shown below:

3yz0
∂2 A(yz0, t)

∂ t2
� 1

4
,

3[A′(yz0, t) − cz]yz0
d2 yz0

dt2
� 1

12
(5 + 4r + 2r2)

(4.13)

where r = yz0/x2
c is a temperature-independent constant introduced by Takahashi (2001).

All the other terms vanish in this limit, for they are proportional to t2. For more explanation
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Figure 2. Temperature dependence of the specific heat Cm/N0t against a logarithmic scale of the
temperature for tc = 0.005, 0.01, and 0.05 from the top, respectively, at low temperature. The thin
and broken curves represent components Cm0/N0 t and Cm1/N0 t , respectively.

of the temperature dependence of yz0, see appendix A, for instance. Therefore the second
term Cm1/N0t gives the following additional enhancement to the T -linear specific heat
coefficient:


Cm1

N0t
� 1

6
(4 + 2r + r2) = 2.5038 . . . , for r = π2/4. (4.14)

The reason of the choice of the above value of r will be given later. Although
Cm1 does not
show any divergence in the limit of the magnetic instability, tc → 0, it gives a sizable extra
enhancement to the T -linear specific coefficient for cases with moderate tc values. Its value
is independent of the value of tc. We show numerical results of Cm/N0t and its components
Cm0/N0t and Cm1/N0t in figure 2 in the low temperature region against a logarithmic scale of
the temperature. The relative importance of the additional enhancement is evident for cases
with larger tc. It amounts to about 30% of the total enhancement for tc = 0.01. From the
figure we also see that its presence is limited to the very low temperature region depending
on the value of tc, the lower temperature region for the smaller tc. Because of the presence
of this term, the shoulders of the temperature dependence in figure 2 become a bit distinct.
The dominance of the second-order t-derivative terms can be recognized from a comparison
of figures 2 and 3, where only the sum of the first and the fifth terms of Cm1/N0t is plotted
against the temperature.

No such extra enhancement of the specific heat was mentioned previously. It results
from the second-order t-derivative terms in the correction term 
Cm. It is related to the t2-
dependence of magnetic properties,such as the saturation momentσ 2

0 (t), in the low temperature
limit. For a quantitative analysis of experiments, we have to be careful of this additional effect
involved in the observed enhancement.



Field dependence of the heat capacity of itinerant electron ferromagnets 4519

10– 6 10– 5 10– 4 10– 3 10– 2 10– 1

T/Tc

0.0

1.0

2.0

3.0

4.0

C
m
’/N

0
t tc=0.01

0.001
0.0001

Figure 3. Temperature dependence of C ′
m/N0 t , the sum of two second order t-derivative terms of

Cm1/N0 t , against the logarithmic scale of the temperature for tc = 0.005, 0.01, and 0.05 from the
top, respectively, at low temperature.

4.2. Around the critical temperature below tc (t � tc)

In order to clarify the distinction of our treatments between cases in the ordered and the
paramagnetic phases around the critical region, let us next study the temperature dependence
of the second term Cm1/N0t in (4.8), the novel term in this treatment. In this limit it can be
well approximated by the following sum of dominant terms,

Cm1

N0 t
= 3yz0 A′′(yz0, t)

(
dyz0

dt

)2

+ 3A′(yz0, t)

[(
dyz0

dt

)2

+ yz0
d2yz0

dt2

]

= 3

(
dyz0

dt

)2

[yz0 A′′(yz0, t) + A′(yz0, t)] + 3yz0 A′(yz0, t)
d2 yz0

dt2
(4.15)

if we take into account the critical behaviours, A′(yz, t) ∝ t/
√

yz and yz0(t) ∝ (t − tc)2.
According to Takahashi (2001), the temperature dependence of σ 2

0 (t) and yz0(t) is given by

σ 2
0 (t) � acσ

2
s [1 − (t/tc)

4/3]
yz0(t) = 2y1(t)σ

2
0 (t), y1(t) � y ′

cσ
2
0 (t)

(4.16)

where y ′
c and ac are defined by

y ′
c =

[
2
√

2(2 +
√

5)

2ξ + 3

]2

yc, ac = 3(2ξ + 3)

5(2ξ − 1)
= 7

5
, ξ = 4r1/2

π
= 2.

From these results it follows that the t-derivatives in (4.15) are given by

dyz0(t)

dt
= 4y ′

cσ
2
0 (t)

∂σ 2
0 (t)

∂ t
= 4y ′

cσ
2
0 (t)

(
−4acσ

2
s

3tc

)

d2 yz0(t)

dt2
= 4y ′

c

(
4acσ

2
s

3tc

)2

,
dσ 2

0 (t)

dt
= −4acσ

2
s

3tc
.
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In addition, if we note the following critical behaviour of A′(yz0, t),

A′(yz0, t) � − π tc
8
√

yz0
� − π tc

8
√

2y ′
cσ

2
0 (t)

we can get the critical t-dependence,

[yz0 A′′(yz0, t) + A′(yz0, t)]

(
dyz0

dt

)2

�
[

π tc
16

√
yz0

− π tc
8
√

yz0

]
dyz0

dt

= −π tc√
2
(y ′

c)
3/2

(
4acσ

2
s

3tc

)2

σ 2
0 (t).

On substitution of the results into (4.15), the critical t-dependence of Cm1/N0t is given as
follows:

Cm1

N0 t
= −3π tc y ′

c

√
2y ′

c

(
4acσ

2
s

3tc

)2

σ 2
0 (t)

= 12(3 − 5ac)y
′
c

(
4acσ

2
s

3tc

)2

A(0, tc)[1 − (t/tc)
4/3]

= 4

3
(5ac/3 − 1)

[
320

√
2ac

7π

]2 (
C4/3

3

)3 (
t

tc
− 1

)

= 55.656 . . .×
(

t

tc
− 1

)
(4.17)

where we have used the relation

A(0, tc) = C4/3

3
t4/3
c ,

π tc
√

2y ′
c

4cz y10
= 5 − 3

ac
= 20

7
.

It follows from (4.17) that the specific heat exhibits t-linear dependence with positive
slope just below the critical temperature. The magnitude of the slope is independent of tc, if
we plot Cm/N0t against the reduced temperature, t/tc = T/Tc. Because the slope is negative
just above tc, it causes a cusp anomaly in its temperature dependence. No such peak anomaly
was mentioned in previous theoretical studies. It originates from the second-order t-derivative
terms. For reference, we show numerical results of the t-dependence of Cm1/N0t in figure 4
for several values of tc in the narrow temperature region below Tc. The sharp critical peak
anomaly of the specific heat was observed by Fawcett et al (1970) on MnSi that has a moderate
value of tc = 0.2–0.3.

The results of this section on the temperature dependence are summarized as follows. The
following new features are all related to the presence of the correction term
Cm. In particular,
the second-order t-derivative terms are responsible for them.

• In the low temperature limit, an additional enhancement to the T -linear coefficient of
the specific heat is present. The origin is related to the t2 temperature dependence of
various magnetic properties, such as σ 2

0 (t) and yz0(t). The dependence is specific to
itinerant electron magnets near the magnetic instability point, and is limited to the very
low temperature region.

• Around the critical temperature, the specific heat exhibits a critical peak anomaly because
the slope of its t-dependence changes its sign. However, for those magnets with very
small values of tc, the behaviour is not so distinct and it will be hard to be observed
experimentally, for the above t-linear dependence is limited to the very narrow region
around tc as shown in figure 4.
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Figure 4. Temperature dependence of Cm1/N0t around the critical region for tc = 0.005, 0.01,
and 0.05.

5. Magnetic field dependence of specific heat

The magnetic field dependence of the entropy and the specific heat is the subject of this
section. The following discussion is based on the results (3.1) and (4.8)–(4.11). In order to
find their temperature dependence in the presence of an external magnetic field H , we have
first to determine the field-induced magnetic moment σ(h, t). Then the inverse magnetic
susceptibilities, y(σ, t) and yz(σ, t), have to be determined corresponding to the σ -value. For
the numerical estimate of σ , we can use the sum rule of the spin amplitude (2.8) derived as the
stability condition of the free energy. On neglecting the tiny spin-wave term, it can be written
as follows:

[
2At(y, t) + A(yz, t)− cz(2y + yz)

]
+ 5cz y10σ

2 = 3A(0, tc). (5.1)

The reduced parameters yz and y defined in (2.5) are proportional to ∂H/∂M and H/M . By
solving (5.1), we can find yz , i.e. the first-order derivative ∂σ/∂h, as a function of y = h/TAσ

and σ , i.e. as a function of σ and h. This means that (5.1) is regarded as an implicit form of
the first-order differential equation for σ as a function of h. We have already shown how to
determine its initial condition, i.e. the spontaneous moment σ0(t) below tc in the absence of
the field (Takahashi 2001). In the paramagnetic phase, the condition is given by σ0(t) = 0 for
h = 0. In the expression (3.5) we also need to know the t-derivatives of y and yz in the presence
of the magnetic field H for numerical estimates of the specific heat. They are evaluated with
the use of the following equation that is derived by the partial t-derivative of (5.1):

2[A′
t(y, t)− cz]

∂y

∂ t

∣∣∣∣
h

+ [A′(yz, t)− cz]
∂yz

∂ t

∣∣∣∣
h

+ 10cz y10σ
∂σ

∂ t

∣∣∣∣
h

+ 2
∂At(y, t)

∂ t
+
∂A(yz, t)

∂ t
= 0. (5.2)
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Let us note that the t-derivatives of y and yz under the constant H condition are related to
the derivative ∂σ/∂ t as follows:

∂y

∂ t

∣∣∣∣
h

= − h

TAσ 2

∂σ

∂ t

∣∣∣∣
h

= − y

σ

∂σ

∂ t

∣∣∣∣
h

∂yz

∂ t

∣∣∣∣
h

= − 1

TA

1

(∂σ/∂h)2
∂

∂ t

(
∂σ

∂h

)
= −TA y2

z

∂

∂h

(
∂σ

∂ t

)
. (5.3)

On substitution of the results into (5.2) we obtain the following differential equation:

[A′(yz, t) − cz]TA y2
z

∂

∂h

(
∂σ

∂ t

)
=

{
−2[A′

t(y, t)− cz]
y

σ
+ 10cz y10σ

} ∂σ
∂ t

∣∣∣∣
h

+ 2
∂At(y, t)

∂ t
+
∂A(yz, t)

∂ t
. (5.4)

By solving (5.4) simultaneously with (5.1) under a suitable initial condition, we can numerically
determine ∂σ/∂ t|h as a function of the external field h. The initial condition at h = 0 is given
by

∂σ(h, t)

∂ t
=




0 for t > tc
dσ0(t)

dt
for t < tc.

The partial t-derivatives of y and yz are then estimated from the relation (5.3).
In what follows, let us discuss the field dependence of the magnetic entropy and the specific

heat in more detail.

5.1. Exchange-enhanced paramagnets

The first example is the exchange-enhanced paramagnet just on the verge of the appearance of
ferromagnetism. In this case, the spin amplitude sum rule can be written by

2A(y, t) + A(yz, t) − cz(2y + yz) + 5cz y10σ
2 = −3cz y00

y00 = − 20
3 y10
〈S2

i 〉tot (5.5)

where y00 = y0(0). The temperature dependence of the inverse of the magnetic susceptibility,
y0(t) = y(0, t), is given by solving

cz y0(t)− A(y0(t), t) = cz y00. (5.6)

In the weak field limit, the field-induced change of its transverse and longitudinal components
are well represented by

δy(σ, t) = y(σ, t)− y0(t) = y1(t)σ
2 + · · ·

δyz(σ, t) = yz(σ, t)− y0(t) = 3y1(t)σ
2 + · · · . (5.7)

The aboveσ 2-linear dependence corresponds to the linearity of the Arrott plot (M2 versus H/M
plot) of the magnetic isotherm. The coefficient y1(t) stands for the fourth-order expansion
coefficient of the free energy in powers of σ . On substitution of (5.7) into (5.5), it is explicitly
given by

y1(t) = cz y10

cz − A′(y0, t)
(5.8)

from the comparison of the σ 2-linear coefficients of (5.5).



Field dependence of the heat capacity of itinerant electron ferromagnets 4523

We can easily confirm the thermodynamic Maxwell relation as follows. At first the partial
t-derivative of y(σ, t) for small σ is given by

∂y(σ, t)

∂ t
= dy0(t)

dt
= 1

cz − A′(y0, t)

∂A(y0, t)

∂ t
= y1(t)

cz y10

∂A(y0, t)

∂ t
. (5.9)

On the other hand, from (3.1) the field-induced change of the magnetic entropy is given by

Sm(σ, t) = Sm(0, t) + δSm(σ, t) (5.10)

δSm(σ, t)

N0
= 3

∫ 1

0
dx x2u[1/u + 1/2u2 − ψ ′(u)]

x

t
(2δy + δyz)

= −3
∂A(y0, t)

∂ t
[2δy(σ, t) + δyz(σ, t)]. (5.11)

The higher-order correction terms are neglected. The σ -derivative of the entropy is, therefore,
given by

∂

∂σ

(
Sm

N0

)
= −30

∂A(y0, t)

∂ t
y1(t)σ. (5.12)

Comparison of the above two expressions, (5.9) and (5.12), now verifies the Maxwell relation,

TAσ

2T0

∂y(σ, t)

∂ t
= TAσ

2T0

y1(t)

cz y10

∂A(y0, t)

∂ t
= 30y1(t)σ

∂A(y0, t)

∂ t

= − ∂

∂σ

(
Sm

N0

)
(5.13)

where we used the relation y10 = TA/60czT0, introduced in (2.15).
The above explanation is the finite temperature extension of the field dependence of the

specific heat in paramagnon theories. It should be noted that its validity is not confined to the
very low temperature region. As an example, the low temperature limit of the field dependence
can be obtained as follows. In this limit, y(σ, t) and Sm(σ, t) are given by

y0(t) = y00 +
1

24cz y00
t2 + · · ·

Sm(σ, t) = 1

2
N0t

[
ln

(
1 +

1

y(σ, 0)

)
+

1

2
ln

(
1 +

1

yz(σ, 0)

)]
+ · · · (5.14)

� N0t

[
3

4
ln

(
1

y00

)
− 5

4

y10

y00
σ 2

]
+ · · · .

From these results we obtain the following external field suppression of the T -linear specific
heat coefficient γm(σ ):

γm(σ ) = lim
t→0

Cm(σ, t)

T
= 1

T0
lim
t→0

Sm(σ, t)

t

= N0

[
ln

(
1 +

1

y(σ, 0)

)
+

1

2
ln

(
1 +

1

yz(σ, 0)

)]

= 3N0

4T0

[
ln

1

y00
− 5y10

3y00
σ 2

]
+ · · · . (5.15)
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The relative suppression of the specific heat in the t = 0 limit is also expressed in the form

−
Cm(σ, 0)

Cm(0, 0)
= −Cm(0, 0)− Cm(σ, 0)

Cm(0, 0)

� 2 ln(1 + y1σ
2/y0) + ln(1 + 3y1σ

2/y0)

3 ln(1/y0)

= 5y10

3y0 ln(1/y0)
σ 2 � 5y10

3y3
0 ln(1/y0)

(
h

TA

)2

= 5

3

(χ0/N0)
3 F̄10

ln(2TAχ0/N0)
h2, (σ = h/TA y0) (5.16)

where χ0 and F̄1 are the magnetic susceptibility and the fourth expansion coefficient of the
free energy expansion in the magnetization M in the ground state, respectively. The above
result of the h2-linear suppression of
Cm corresponds to the formula


Cm(σ, 0)

Cm(0, 0)
= −0.1

S

ln S

(
H

Tsf

)2

, (S = (1 − α)−1, 1/Tsf ∝ Sχ0
pauli)

derived by Béal-Monod et al (1968) for the electron gas model.

5.2. Field dependence in the paramagnetic phase (T > Tc)

Let us next discuss the temperature and magnetic field dependence in the paramagnetic phase.
The preliminary results were reported by Takahashi et al (2004). The σ -dependence of the
inverse magnetic susceptibility y(σ, t) and the entropy Sm(σ, t) assumes the same forms as (5.9)
and (5.11) in the preceding subsection. Therefore the Maxwell relation can be confirmed as
well. The reduced inverse magnetic susceptibility y0(t) is, on the other hand, determined by
solving

A(y0, t)− cz y0 = A(0, tc). (5.17)

The field-induced suppression of the entropy has the same expression as (5.11). The
temperature dependence of the field-induced specific heat is simply obtained by the t-derivative
of (5.11) under the constant h condition as follows:

δCm = t
∂δSm

∂ t
= δCm0 + δCm1 (5.18)

δCm0

N0t
= −3

d

dt

∂A(y0, t)

∂ t

∣∣∣∣
y0

(2δy + δyz)

δCm1

N0t
= −3

∂A(y0, t)

∂ t

(
2
∂y

∂ t

∣∣∣∣
h

+
∂yz

∂ t

∣∣∣∣
h

− 3
dy0(t)

dt

)
δy(σ, t) = y(σ, t)− y0(t), δyz(σ, t) = yz(σ, t)− y0(t).

(5.19)

The above expression can be shown in a slightly different form. Note that the t-dependence
of the thermal amplitude A(y0, t) is given by

∂A(y0, t)

∂ t
= −[A′(y0, t) − cz]

dy0(t)

dt
.

On differentiation of the above result again, we obtain

d

dt

∂A(y0, t)

∂ t
= −

[
A′′(y0, t)

dy0(t)

dt
+
∂A′(y0, t)

∂ t

]
dy0(t)

dt
− [A′(y0, t) − cz]

d2 y0(t)

dt2
.
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On the other hand, the t-derivative of y1(t) defined in (5.8) gives[
∂2 A(y0, t)

∂y2
0

y ′
0(t) +

∂2 A(y0, t)

∂y0 ∂ t

]
y1(t) + [A′(y0, t)− cz]y ′

1(t) = 0.

From these results the second-order derivative of the thermal amplitude can be expressed in
the form

d

dt

∂A(y0, t)

∂ t
= cz y10

y1(t)

d2 y0(t)

dt2
− cz y10

y2
1(t)

dy1(t)

dt

dy0(t)

dt
.

In conclusion, the field dependence of the specific heat can be given in the following equivalent
form

δCm(σ, t)

N0t
= −3cz y10

y1(t)

[
dy2

0(t)

dt2
− 1

y1(t)

dy1(t)

dt

dy0(t)

dt

]
(2δy + δyz)

− 3cz y10

y1(t)

dy0(t)

dt

(
2
∂y

∂ t

∣∣∣∣
h

+
∂yz

∂ t

∣∣∣∣
h

− 3
dy0(t)

dt

)
(5.20)

in terms of the t-derivatives of y0(t) and y1(t).
Based on the above expressions, the field dependence of the specific heat is discussed

below in more detail, focusing on the region at higher temperature and the critical region
above tc.

5.2.1. Field dependence at high temperature. Except in the critical region, theσ 2-dependence
of y and yz is given by (5.7). At higher temperature where this dependence is well justified,
the t-dependence of the field-induced specific heat change is therefore given by

δCm

N0t
= −15cz y10σ

2

[
∂2 y0(t)

∂ t2
− 2

y0

(
∂y0

∂ t

)2
]

= 15cz y10

T 2
A

∂2 y−1
0 (t)

∂ t2
h2. (5.21)

This gives the positive enhancement, and the magnitude of δCm rapidly decreases according
to the t/(t − tc)3-dependence with increasing the temperature, if y0(t) obeys the Curie–Weiss
law behaviour, y0(t) ∝ (t − tc). The field-induced entropy change δSm(σ, t) is always
negative. Because its temperature dependence has a positive slope, it gives rise to the positive
enhancement of δCm at high temperature. From the above expression, it seems that the h2-
coefficient would diverge at t = tc. This comes from our σ 2-linear approximation for y and
yz . Around the critical region, the effect of the critical magnetic isotherm has to be included
for the proper treatment as shown below.

5.2.2. Field dependence around the critical temperature. In the critical limit, t → tc, we
have already mentioned that y(σ, t) and yz(σ, t) obey the critical σ 4-linear behaviour given
in (2.19). According to (5.11), the field-induced change of the entropy is, therefore, given by

δSm

N0t
= − 4

tc
A(0, tc)[2δy(σ, tc) + δyz(σ, tc)] � −28

tc
A(0, tc)ycσ

4. (5.22)

With the use of (5.18) and (5.19), the critical limit of the specific heat is evaluated as
follows. At first the t-derivative coefficients of the thermal amplitude A(0, t) in (5.19) are
estimated as follows:

∂A(0, t)

∂ t
� 4

3t
A(0, t),

∂2 A(0, t)

∂ t2
� 4

9t2
A(0, t),

∂2 A(y0, t)

∂ t ∂y0

∂y0

∂ t
� − π

8
√

y0

∂y0

∂ t
= −π

4

∂
√

y0

∂ t
= − 4

3t2
A(0, t)
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d

dt

∂A(y0, t)

∂ t
= ∂2 A(y0, t)

∂ t2
+
∂2 A(y0, t)

∂ t ∂y0

∂y0

∂ t
� − 8

9t2
A(0, t)

where we have used the relation
√

y0(t) � 4[A(0, t)− A(0, tc)]/π t , justified around t � tc.
Because the first term Cm0/t in (5.18) is proportional to σ 4, it is negligible in the weak field
limit. In the presence of the applied field, the t-derivatives of y and yz in (5.19) are evaluated
from the following t-derivative of the sum rule (5.2):

−2
π t

8
√

y

∂y

∂ t

∣∣∣∣
h

− π t

8
√

yz

∂yz

∂ t

∣∣∣∣
h

+ 10cz y10σ
∂σ

∂ t
+ 3

∂A(0, t)

∂ t
� 0 (5.23)

where we have used the critical y-dependence of the thermal spin fluctuation amplitude,
∂A(y, t)/∂y � −π t/8

√
y. The above equation (5.23) implies theσ -dependence,∂y/∂ t ∝ σ 2,

in the σ → 0 limit, if we take into account the critical magnetization process, y � ycσ
4 and

yz � 5ycσ
4.

We can now derive the relation between the t-derivatives of yz and y, the first two terms
of (5.23), by using the following relations:

∂yz

∂ t

∣∣∣∣
h

= ∂yz

∂ t

∣∣∣∣
σ

+
∂yz

∂σ

∂σ

∂ t
= ∂yz

∂ t

∣∣∣∣
σ

− ∂yz

∂σ

σ

y

∂y

∂ t

∣∣∣∣
h

= ∂yz

∂ t

∣∣∣∣
σ

− 20
∂y

∂ t

∣∣∣∣
h

(5.24)

∂y

∂ t

∣∣∣∣
h

= ∂y

∂ t

∣∣∣∣
σ

+
∂y

∂σ

∂σ

∂ t
= ∂y

∂ t

∣∣∣∣
σ

− σ

y

∂y

∂σ

∂y

∂ t

∣∣∣∣
h

= ∂y

∂ t

∣∣∣∣
σ

− 4
∂y

∂ t

∣∣∣∣
h

(5.25)

where we have taken into account (5.3) and the critical σ 4 behaviours of y and yz . Because of
the σ 2-linear dependence of ∂y/∂ t|σ , ∂yz/∂ t|σ in (5.24) is given by

∂yz

∂ t

∣∣∣∣
σ

= ∂y

∂ t

∣∣∣∣
σ

+ σ
∂

∂σ

∂y

∂ t

∣∣∣∣
σ

= 3
∂y

∂ t

∣∣∣∣
σ

. (5.26)

The constant-h derivative, ∂yz/∂ t|h , in (5.23) is therefore given as follows:

∂yz

∂ t

∣∣∣∣
h

= 3
∂y

∂ t

∣∣∣∣
σ

− 20
∂y

∂ t

∣∣∣∣
h

= −5
∂y

∂ t

∣∣∣∣
h

. (5.27)

On the other hand, from the relation between the t-derivatives of σ and y in (5.3), we can find
that the third term is also proportional to the first term as shown below:

10cz y10σ
∂σ

∂ t
= −10cz y10

σ 2

y

∂y

∂ t

∣∣∣∣
h

= −10cz y10

√
y/yc

y

∂y

∂ t

∣∣∣∣
h

= − π tc
2
√

y
(2 +

√
5)
∂y

∂ t

∣∣∣∣
h

(5.28)

where yc is defined in (2.19). On substitution of (5.27) and (5.28) into (5.23), the following
result is derived:

∂y

∂ t

∣∣∣∣
h

� 24
√

yc

(10 + 3
√

5)π tc

∂A(0, tc)

∂ tc
σ 2. (5.29)

We are thus finally led to the following critical limit of the magnetic specific heat in the
paramagnetic phase:

δCm0

N0t
= −3

d

dt

∂A(0, tc)

∂ tc
(2y + yz) = 56

3t2
A(0, t)ycσ

4
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Figure 5. Temperature dependence of the entropy change δSm /N0 above Tc under applied magnetic
fields h = 0.2 × 10−5, 1.0 × 10−5, and 5.0 × 10−5 from the top.

δCm1

N0t
= −3

∂A(0, tc)

∂ tc

(
2
∂y

∂ t

∣∣∣∣
h

+
∂yz

∂ t

∣∣∣∣
h

)

= 216
√

yc

(10 + 3
√

5)π tc

(
∂A(0, tc)

∂ tc

)2

σ 2

δCm

N0t
= 8A3(0, t)

t4
c

[
20

π(2 +
√

5)

]2
[

7

3

(
σ

σs

)4

+
12(2 +

√
5)

5(10 + 3
√

5)

(
σ

σs

)2
]
.

We show in figures 5 and 6 numerical results of the temperature dependence of the entropy
and the specific heat, respectively, in the presence of an applied magnetic field. The field-
induced entropy is always negative. It monotonically increases with temperature. As the
slope of its t-dependence, the specific heat always becomes positive above Tc including its
critical limit. The thin full and dashed curves in figure 6 represent δCm0/N0t and δCm1/N0t ,
respectively. The component δCm0/N0t is dominant only near the critical temperature Tc.
On the other hand, δCm1/N0t shows a broad maximum slightly above Tc. It then rapidly
decreases proportional to t−2 with increasing the temperature. Because δCm0/N0t is negligible
under a weak applied magnetic field, the total change, δCm/N0t , shows a similar temperature
dependence with δCm1/N0t . However, in the presence of a higher magnetic field it becomes
monotonically decreasing owing to the rapid growth of δCm1/N0t around Tc. In figure 7, the
temperature dependence of the specific heat change is shown for various values of tc under the
same applied magnetic field h = 1.0 × 10−5.

The external field effect on the magnetic specific heat of Sc3In was measured by Takeuchi
and Masuda (1979). Their observed δCm/T shows a broad peak above the critical temperature.
The peak value is around 2 mJ K−2 g-atom for H = 10 T, if we assume that all the atoms
have the same magnetic moment. This corresponds to T0(δCm/N0T )max � 0.16 estimated by
assuming that only Sc atoms have moments and T0 = 500 K. On the other hand, our numerical
result gives a peak value of about 0.1 for the same values of T0 and TA, in fairly good quantitative
agreement with experiments. The applied field of 1 T corresponds to h = 1.3 × 10−4 for
TA = 104 K. Their numerical study based on the SCR theory showed the monotonous increase
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Figure 6. Temperature dependence of the specific heat change δCm/N0t above Tc under applied
magnetic fields. (A): h = 0.2 × 10−5, (B): h = 1.0 × 10−5, (C): h = 5.0 × 10−5, and
(D): h = 1.0 × 10−4. The thin full and dashed curves represent δCm0/N0 t and δCm1/N0 t ,
respectively.
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Figure 7. Temperature dependence of the specific heat change δCm/N0 t above Tc for tc = 0.05
(A), 0.01 (B), and 0.005 (C) under the applied magnetic field h = 1.0 × 10−5.

of δCm/T in their calculated range of the temperature. They also predicted the negative value
of the critical limit above tc that seems to arise from the neglect of the critical behaviour of the
magnetic isotherm.

5.3. Field dependence in the ordered phase

In the ordered phase the field dependence of the entropy and the specific heat can be treated
in the same manner as in the paramagnetic phase except that an explicit account of λ(σ, t) is
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necessary. From (3.1) and (3.3), the field-induced change of the entropy is given by

δSm(σ, t)

N0
= −3

[
2
∂At(0, t)

∂ t
y(σ, t) +

∂A(yz0, t)

∂ t
δyz(σ, t)

]
+
δ
Sm(σ, t)

N0

δ
Sm(σ, t)

N0
= 60cz y10

[
dλ0(t)

dt
(δyz − y)− dyz0(t)

dt
δλ(σ, t)

]
.

(5.30)

The above expression can be written in a simplified form as shown below. Note the following
field-induced change of the amplitude sum rule (5.1):

2[A′
t(0, t)− cz]y(σ, t) + [A′(yz0, t)− cz]δyz(σ, t) + 5cz y10(σ

2 − σ 2
0 ) = 0.

Using the result, the σ -variation of λ(σ, t) defined in (2.10) is given by

60cz y10δλ(σ, t) = 2
{
[A′(yz0, t) − cz]δyz − [A′

t(0, t)− cz]y(σ, t)
} − 5cz y10(σ

2 − σ 2
0 )

= 3[A′(yz0, t) − cz]δyz. (5.31)

On substitution of (4.1) and (5.31) in (5.30), the field-induced variation of the entropy correction
is given as follows:

δ
Sm(σ, t)

N0
= −3δyz

{
2
∂At(0, t)

∂ t
+ [A′(yz0, t)− cz]

∂yz0

∂ t
+ 5cz y10

dσ 2
0

dt

}

+ 3y

[
2
∂At(0, t)

∂ t
+ 5cz y10

dσ 2
0

dt

]
. (5.32)

If we substitute the above expression in (5.30), δSm is finally given by the following simple
expression:

δSm(σ, t)

N0
= 15A(0, tc)y(σ, t)

du(t)

dt
, u(t) = σ 2

0 (t)/σ
2
s . (5.33)

In the above derivation the δyz-linear term vanishes identically because of the sum rule (4.2).
The entropy change is proportional to the inverse of the transverse magnetic susceptibility y
and its coefficient is determined by the slope of the t-dependence of the spontaneous magnetic
moment σ 2

0 (t).
In spite of its simplicity, it is quite easy to confirm that (5.33) satisfies the thermodynamic

Maxwell relation. Note first that the partial t-derivative of the magnetic isotherm,

y(σ, t) = y1(t)[σ 2 − σ 2
0 (t)], (5.34)

gives

∂y(σ, t)

∂ t
= y ′

1(t)[σ
2 − σ 2

0 (t)] − y1(t)
dσ 2

0 (t)

dt
� −y1(t)σ

2
s

du(t)

dt
. (5.35)

On the other hand, from (5.33) the partial σ -derivative of the entropy is given by

1

N0

∂Sm

∂σ
= 30A(0, tc)y1(t)σ

du(t)

dt
= 30cz y10σ

2
s y1(t)σ

du(t)

dt
.

Comparison of the above two expressions verifies the Maxwell relation (5.13).
It is now apparent that the presence of the free energy correction and the use of its stability

condition has a key significance in our derivation of the thermodynamically consistent and
reasonable result on the field dependence of the entropy. This also justifies our discussion
on the temperature dependence of the specific heat in section 4, since the second-order t-
derivative terms there result from the same entropy correction
Sm(σ, t). The presence of the
term proportional to the first-order t-derivative ofσ 2

0(t) in (5.32) also provides the second-order
t-derivative term in the field-induced change of the specific heat as shown below.
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Figure 8. Temperature dependence of the entropy change δSm/N0 for tc = 0.01 under a weak
applied magnetic field, h = 0.05 × 10−5, 0.1 × 10−5, and 0.2 × 10−5, from the top.

The field-induced specific heat change is simply derived from the t-derivative of the
entropy change (5.33) under a fixed external magnetic field. It is given as the sum of two
contributions

δCm(σ, t) = δCm1(σ, t) + δCm2(σ, t) (5.36)

δCm1(σ, t)

N0t
= 15A(0, tc)y(σ, t)

d2u(t)

dt2
(5.37)

δCm2(σ, t)

N0t
= 15A(0, tc)

du(t)

dt

∂y(σ, t)

∂ t

∣∣∣∣
h

(5.38)

that come from the first-order and the second-order t-derivatives of the spontaneous moment
σ 2

0 (t), respectively. In the low-field limit where (5.34) and (5.35) are justified, (5.37) and (5.38)
are also written by

δCm1(σ, t)

N0t
= 15A(0, tc)y1(t)

d2u(t)

dt2
[σ 2 − σ 2

0 (t)]

δCm2(σ, t)

N0t
= 15A(0, tc)

du(t)

dt

y

yz

∂y(σ, t)

∂ t

∣∣∣∣
σ

= −15

2
A(0, tc)y1(t)σ

2
s

(
du(t)

dt

)2

[σ 2/σ 2
0 (t)− 1].

(5.39)

If we notice the low-field limit of the magnetic isotherm,

y = y10(σ
2 − σ 2

s ) = h

TAσ
� h

TAσs

it follows that the field-induced change δCm is generally suppressed and is proportional to the
applied field h below tc. The h-linear suppression of δCm was actually observed on Sc3In by
Ikeda and Gschneidner (1983).

For the numerical analysis, we need the first-order and the second-order t-derivatives of
u(t), the inverse transverse magnetic susceptibility y(σ, t) under the presence of the external
field, and its t-derivative. We show in figures 8 and 9 the temperature dependence of the



Field dependence of the heat capacity of itinerant electron ferromagnets 4531

0.0 0.2 0.4 0.6 0.8 1.0
T/Tc

δC
m

/N
0
t

– 1.00

– 0.50

0.00

Figure 9. Field-induced change of δCm/N0t for tc = 0.01 under applied magnetic fields
h = 0.2 × 10−5, 1.0 × 10−5, and 5.0 × 10−5, from the top.
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Figure 10. The t-dependence of δCm/N0t for tc = 0.005, 0.01, and 0.05 under the applied
magnetic field h = 1.0 × 10−5, from the bottom.

entropy and the specific heat, respectively, for various applied fields. The field-induced entropy
decreases monotonically with increasing the temperature. Therefore the induced change of
the specific heat δCm/t is always negative below tc, including the critical limit. It shows the
discontinuous change at t = tc. In figure 10, the temperature dependence of the specific heat
under an applied magnetic field is shown for cases with different tc. In figure 11 δCm/N0t
is plotted against the magnitude of the external magnetic field h at temperature t/tc = 0.1,
0.5, and 0.9. It shows the good linearity at low temperature. At higher temperature, though
the deviation from the linearity becomes significant in the weak field region, it shows the
monotonic decrease with increasing h, in contrast with experiments on Sc3In for T/Tc ∼ 0.4
(Ikeda and Gschneidner 1983), where clear saturation is observed.
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Figure 11. The specific heat suppression as a function of the applied field h for T/Tc = 0.1, 0.5,
and 0.9 (full, broken, and chain curves, respectively) for tc = 0.01.

In what follows we show the temperature and field dependence of the entropy and the
specific heat, paying particular attention to the ranges at low temperature and around tc.

5.3.1. In the low temperature limit. According to Takahashi (2001) the t-dependence of
y(σ, t) and u(t) at low temperature is given by

y(σ, t) = y1(t)[σ 2 − σ 2
0 (t)] � y10(σ

2 − σ 2
s )

yz(σ, t) = yz0 + 3y1(t)[σ 2 − σ 2
0 (t)] � 2y10σ

2
s + 3y10(σ

2 − σ 2
s )

u(t) = 1 − aT t2

(60cz y10)2σ 4
s

+ · · · , aT = 10cz(r
2 + 5r + 4)

(5.40)

where the constant ratio r = yz0/x2
c has already been introduced in (4.13). From (5.33) the

field dependence of the entropy is given by

δSm(σ, t)

N0
= −15A(0, tc)

(
σ 2

σ 2
s

− 1

)
2aT t

(60cz y10)2σ 2
s

= − aT t

120cz

(
σ 2

σ 2
s

− 1

)
. (5.41)

Therefore the entropy is suppressed proportional to (σ 2 − σ 2
s ) by the applied magnetic field.

Its slope is proportional to the temperature.
Because the second term Cm2 in (5.36) is neglected in the low temperature limit, the

field-induced suppression of the T -linear coefficient γm of the specific heat is given by

δγm(σ )

N0
= δCm

N0T
= 15A(0, tc)

T0
y10(σ

2 − σ 2
s )

d2u(t)

dt2

= 15A2(0, tc)

cz T0

(
σ 2

σ 2
s

− 1

)
= F̄10

32
(σ 2 − σ 2

s )
d2σ 2

0 (t)

dT 2
(5.42)

where F̄10 = 2T 2
A/15czT0 represents the fourth expansion coefficient of the free energy in

powers of σ (Takahashi 2001). It is suppressed because of the negative sign of d2u(t)/dt2
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Figure 12. Field-induced change δCm/N0 t in the low temperature region for tc = 0.01 under the
applied magnetic fields h = 0.2 × 10−5, 1.0 × 10−5, and 5.0 × 10−5.

in (5.40). As we have already shown above, the T -linear coefficient γm is suppressed
proportional to h. Its negative initial slope is simply determined by the second-order T -
derivative of the squared spontaneous moment σ 2

0 (t),

1

N0

∂γm

∂h
= F̄10

32TA y10σs

∂σ 2
0 (t)

∂T 2
= 1

4σs

d2σ 2
0 (t)

d2T 2

= − aT

2T 2
Aσ

3
s

. (5.43)

This is the result derived as the natural consequence of the Maxwell relation. In figure 12, the
field-induced change of the specific heat is plotted against the reduced temperature T/Tc in the
low temperature region. It is remarkable that its magnitude does not decrease monotonically
with lowering the temperature. The reason comes from the steep decrease of the entropy there
caused by the second-order t-derivative terms.

5.3.2. Field dependence around the critical temperature. In order to discuss the field-induced
change of the entropy and the specific heat in the critical limit, we need the t-derivatives of
the spontaneous magnetic moment u(t). They are given as follows (see appendix A for the
second derivative coefficient u2):

u(t) = ac[1 − (t/tc)
4/3],

du(t)

dt
= −u1 = −4ac

3tc
d2u(t)

dt2
� −u2, (u2 > 0).

(5.44)

If we note the critical magnetization process, y(σ, tc) = ycσ
4, the following entropy change

is derived from (5.33).

δSm

N0
= 15

(
−4ac

3tc

)
A(0, tc)y(σ, tc) = −28A(0, tc)

tc
ycσ

4 (5.45)
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where ac = 7/5 is used (see (4.10)). We can confirm that the entropy change δSm is continuous
at t = tc, from the comparison of the above (5.45) with the paramagnetic result (5.22). This
undertakes the validity of our choice of r and ξ in sections 4.1 and 4.2.

By substituting (5.44) into (5.36)–(5.38), the critical field dependence of the specific heat
is given by

δCm(h, t)

N0t

∣∣∣∣
t=tc

= −15A(0, tc)

[
u2 y(σ, tc) + u1

∂y

∂ t

∣∣∣∣
h

]
.

From the continuity, y and ∂y/∂ t|h are positive under the applied external field. The
field-induced specific heat change is, therefore, negative in the critical limit below tc. The
discontinuous change takes place for δCm/N0t at t = tc.

6. Discussion

In the present paper, we have succeeded in giving a comprehensive description of the magnetic
entropy and the specific heat of itinerant electron magnets. Thermodynamically consistent
formulae are derived with the use of the stability conditions of the free energy. As the result,
the entropy satisfies the Maxwell relation of thermodynamics. We have found that these
thermal properties are closely related to the global behaviour of the magnetic isotherm in the
plane of the temperature and the external magnetic field axes. In this context, the present study
owes very much to our previous study (Takahashi 2001).

Various new features predicted in this study are summarized as follows.

(i) In the absence of an applied magnetic field, the specific heat shows a slight but sharp
critical peak at t = tc.

(ii) A new additional enhancement of the linear specific heat coefficient is present in the low
temperature limit.

(iii) The field-induced change of the entropy is always positive above tc, while it is negative
below tc.

(iv) For a proper description of the entropy and the specific heat in the critical region, the
critical behaviour of the magnetic isotherm has to be taken into account.

(v) At low temperature the field-induced change δCm/t decreases with lowering the
temperature.

(vi) The field-induced suppression of the T -linear coefficient δγm of the specific heat is
determined by the slope of the T 2-dependence of the spontaneous magnetization at low
temperature.

In so far as we are mainly concerned with paramagnetic properties, the thermodynamic
consistency is not so severe. However, it becomes very crucial near the critical region. The
inadequate inclusion of the term proportional to d2 y(t)/dt2 in the SCR theory gives rise to the
spurious behaviour of the specific heat at the critical point, for instance. If there were terms
proportional to (∂y/∂ t)2 and ∂2 y/∂ t2 in the specific heat, it would also be very difficult to
verify the Maxwell relation.

It seems that our final results do not contain any explicit effect of the quantum zero-point
spin fluctuations. Note however that we could derive the specific heat formula in consistence
with the conserved total spin amplitude. As the stability condition, quantum zero-point spin
fluctuations do play significant roles. Their neglect from the beginning is of course not justified
logically. Ishigaki and Moriya (1998) have also treated the effect of zero-point spin fluctuations
by simply including the effect in the conventional framework of the SCR theory. No treatment
of the specific heat including its external field effect has yet been presented. The explicit form
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of the free energy proposed in this study will be helpful in our future studies on magnetic
properties of itinerant electron magnets.
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Appendix A. Temperature dependence of σ2
0(t) and yz0(t)

According to Takahashi (2001) the temperature dependence of u(t) = σ 2
0 (t)/σ

2
s and v(t) =

yz0(t)/yz0(0) is given by solving the following simultaneous equations:

u = v

[
1 − 3

5cz
A′(yz0, t)− 2

5cz
A′

c(0, t)

]

u = 2v + 3

5
− 1

5A(0, tc)
[A(yz0, t) + 2At(0, t)]

(A.1)

where yz0(t) = 2A(0, tc)v(t)/cz and u(0) = v(0) = 1. In the low temperature limit, thermal
amplitudes show the following t2-dependence:

A(yz, t) � t2

24yz0(0)
, A′(yz, t) � − t2

24y2
z0(0)

, (yz0(0) = 2y10σ
2
s )

Ac(0, t) � r t2

24yz0(0)
, A′

c(0, t) � − r2t2

24y2
z0(0)

.

If we define δu = u − 1 and δv = v − 1, then the t2-linear terms of (A.1) can be expressed in
the form

δu = δv +
t2(3 + 2r2)

120y2
z0(0)

, δu = 2δv

5
− t2(1 + 2r)

120A(0, tc)yz0(0)
.

As the solutions, the second-order derivatives of u and v at t = 0 are given by

d2u

dt2
= −cz(4 + 5r + r2)

180A2(0, tc)
,

d2v

dt2
= −cz(5 + 4r + 2r2)

144A2(0, tc)
.

Around t = tc, solutions of (A.1) are obtained by assuming the following expansions:

u(t) = −u1(t − tc)− u2

2
(t − tc)

2 + · · · , (A.2)

v(t) = v2

2
(t − tc)

2 +
v3

6
(t − tc)

3 + · · · (A.3)

with positive coefficients, ui and vi+1 (i = 1, 2). The coefficient u1 has already been given
in (5.44). From the critical behaviour of the thermal amplitude, the first line of (A.1) is well
approximated by

u � v +
v

5cz

[
3π t

8
√

yz0
+

2ξπ t

8
√

yz0

]
= v +

π t (3 + 2ξ)

40cz
√

2A(0, tc)/cz

√
v

= v2

2
(t − tc)

2 +
π t (3 + 2ξ)

√
v2

80
√

cz A(0, tc)
(tc − t)

[
1 +

v3

6v2
(t − tc) + · · ·

]
. (A.4)

The comparison of the (t − tc)-linear coefficient of (A.4) with (A.2) leads to the following
estimate:

u1 = π tc(3 + 2ξ)
√
v2

80
√

cz A(0, tc)
, or v2 =

(
80u1

7π tc

)2

cz A(0, tc) = cz A(0, tc)

(
64

3π t2
c

)2

.
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On substitution of the result for u1 again in (A.4), we obtain

u = v2

2
(t − tc)

2 + u1
t

tc
(tc − t)

[
1 +

v3

6v2
(t − tc) + · · ·

]
.

From the comparison of the above (t − tc)2 terms with (A.3), the following relation is derived:

v2 −
(

2

tc
+
v3

3v2

)
u1 = −u2. (A.5)

On the other hand, the right-hand side of (A.2) can be expanded as follows:

u � 2v

5
+

3

5
[1 − A(0, t)/A(0, tc)] +

1

5A(0, tc)

π t

4

√
yz0

� 2

5

v2

2
(t − tc)

2 +
3

5

[
1 −

(
t

tc

)4/3
]

+
1

5A(0, tc)
[A(yz0, t)− A(0, t)]

= 1

5
v2(t − tc)

2 − 3

7
u1(t − tc)− 3

5

4

9t2
c
(t − tc)

2

− 4t

7tc
u1(tc − t)

[
1 +

v3

6v2
(t − tc) + · · ·

]
.

The comparison of (t − tc)2-linear coefficients in this case gives

4u1

7tc
− 1

2
u2 = 1

5
v2 − 12

45t2
c

− 2v3

21v2
u1. (A.6)

By eliminating u1v3/v2 terms from (A.5) and (A.6) we finally obtain for u2 the result

u2 = 14

35
v2 +

56

45t2
c

.

Appendix B. The Maxwell relation of the thermodynamics

In this appendix we show that the Maxwell relation of the thermodynamics is satisfied for our
entropy (3.1). Against the change of the temperature and the magnetization the free energy
change dF (M, T ) can be given by

dF (M, T ) = −S(M, T ) dT + H (M, T ) dM.

In our notation, it is written by

dF = −Sm dT +
1

2
N0h dσ = −T0Sm dt +

N0

2
h dσ. (B.1)

The Maxwell relation is equivalent to saying that (B.1) represents the total derivative. It implies
the following relation:

∂2 F

∂σ∂T
= −∂Sm

∂σ
= N0

2T0

∂h

∂ t
= ∂2 F

∂T ∂σ
.

The t-derivative under the fixed σ condition can be replaced by ∂y/∂ t as follows:

− ∂

∂σ

(
Sm(σ, t)

N0

)
= TA

2T0
σ
∂y(σ, t)

∂ t

∣∣∣∣
σ

. (B.2)

The validity of (B.2) will be shown below for our entropy.
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From the t-derivatives of the minimum condition of the free energy (2.7) under the fixed
σ condition, we can get the following relations:

2B ′
t(y)

∂y

∂ t
+ B ′(yz)

∂yz

∂ t
+

TA

dT0

∂η1

∂ t
= −2

∂At(y, t)

∂ t
− ∂A(yz, t)

∂ t
,

2T0

TA

[
B ′(yz)

∂yz

∂ t
− B ′

t(y)
∂y

∂ t

]
− ∂λ

∂ t
− 1

3

∂η1

∂ t
= −2T0

TA

[
∂A(yz, t)

∂ t
− ∂At(y, t)

∂ t

] (B.3)

where B ′
t(y, t) and B ′(yz, t) stand for the y- and yz-derivatives of Bt(y, t), B(yz, t),

respectively, given by

B ′(y, t) = 1

t

∫ 1

0
dx x4[1/u + 1/2u2 − ψ ′(u)] − cz

B ′
t(y, t) = 1

t

∫ 1

xc

dx x4[1/u + 1/2u2 − ψ ′(u)] − cz + A′
sw(σ, t)

A′
sw(σ, t) = − 1

2t

(
TAσ

T0

)2 ∫ xc

0
dx x2 βωqeβωq

(eβωq − 1)2
.

The y-derivative of the thermal spin-wave amplitude is also shown above as A′
sw(σ, t). The

partial t-derivative of the transverse thermal and spin-wave amplitudes, on the other hand, are
given by

∂At(y, t)

∂ t
= −1

t

∫ 1

xc

dx x3u
[
1/u + 1/2u2 − ψ ′(u)

]
+
∂Asw(σ, t)

∂ t

∂Asw(σ, t)

∂ t
= TAσ

2T0t

∫ xc

0
dx

x2βωqeβωq

(eβωq − 1)2
.

The following relations are also derived from the σ -derivatives:

2B ′
t(y, t)

∂y

∂σ
+ B ′(yz, t)

∂yz

∂σ
+

TAσ

2T0d
= −2Dsw,

d
2T0

3TA

[
B ′(yz, t)

∂yz

∂σ
− B ′

t(y, t)
∂y

∂σ

]
− σ

6
− ∂λ

∂σ
= d

2T0

3TA
Dsw

Dsw = ∂Asw

∂σ
+

TA

2T0d

∂η1

∂σ
= ∂Asw

∂σ
− Asw

σ
= − t

σ

∂Asw

∂ t

where we have used (2.12) between η′
1 and Asw, and the relation in the last line,

∂Asw

∂σ
= Asw

σ
− t

σ

∂Asw

∂ t
.

Both the above t- and σ -derivatives of y and yz can be expressed in terms of those of y and

yz in the matrix forms

M

( ∂y
∂ t
∂
yz

∂ t

)
=

( −v1

v2

)

M

( ∂y
∂σ

∂
yz

∂σ

)
=

(
TAσ

6T0
− 2t

σ

∂Asw

∂ t

) ( −1
1/2

)
+

3TA

6T0

∂λ

∂σ

(
0
1

) (B.4)

where v1 and v2 are defined by

v1 = −2
∂At(y, t)

∂ t
− ∂A(yz, t)

∂ t
− TA

3T0

∂η1

∂ t

v2 = ∂At(y, t)

∂ t
− ∂A(yz, t)

∂ t
+

TA

6T0

[
3
∂λ

∂ t
+
∂η1

∂ t

]
.
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The 2 × 2 matrix M and its inverse are introduced by

M =
(

2B ′
t(y, t) + B ′(yz, t) B ′(yz, t)

−B ′
t(y, t) + B ′(yz, t) B ′(yz, t)

)
,

M−1 = 1

det M

(
B ′(yz, t) −B ′(yz, t)

B ′
t(y, t)− B ′(yz, t) 2B ′

t(y, t) + B ′(yz, t)

)
(B.5)

=
(

m11 m12

m21 m22

)
.

For the right-hand side of (B.2), the following expression of ∂y/∂ t is derived from the
above results:
∂y

∂ t
= −m11

[
2
∂At(y, t)

∂ t
+
∂A(yz, t)

∂ t

]
+ m12

[
∂At(y, t)

∂ t
− ∂A(yz, t)

∂ t

]

+
TA

6T0

[
3m12

∂λ

∂ t
+ 2(−m11 + m12/2)

∂η1

∂ t

]
= − m11v1 + m12v2. (B.6)

On the other hand, σ -derivative of the entropy is given by

1

N0

∂Sm

∂σ
= −3

[
2
∂At(y, t)

∂ t

∂y

∂σ
+
∂A(yz, t)

∂ t

∂yz

∂σ

]
+

TA

T0
ssw +

1

N0

∂
Sm

∂σ
. (B.7)

Among terms of the above result, the last two terms can be rewritten in terms of the derivatives
of y and 
yz as shown below. The third spin-wave term can be expressed as follows:

ssw = − 3T0

TAσ

∫ xc

0
dx x2 eβωq (βωq)

2

(eβωq − 1)2
− ∂

∂σ

(
y
∂η1

∂ t
+
∂η0

∂ t

)

= − ∂y

∂σ

∂η1

∂ t
+
∂y

∂ t

∂η1

∂σ
− ∂

∂ t

(
y
∂η1

∂σ
+
∂η0

∂σ

)
− 3T0

TAσ

∫ xc

0
dx x2 eβωq (βωq)

2

(eβωq − 1)2

= − ∂y

∂σ

∂η1

∂ t
− 6T0t

TAσ

∂Asw

∂ t

∂y

∂ t
.

We have used the following relation derived from (2.11):

∂

∂ t

(
y
∂η1

∂σ
+
∂η0

∂σ

)
+

T0d

TAσ

∫ xc

0
dx

x2eβωq (βωq)
2

(eβωq − 1)2
= ∂η1

∂σ

∂y

∂ t
+

6T0t

TAσ

∂Asw

∂ t

∂y

∂ t
.

From the definition (2.10) for
F1 and (3.2), the σ -derivative of the last entropy correction is
given by

∂
Sm

∂σ
= N0

TA

T0

(
∂λ

∂ t

∂
yz

∂σ
− ∂λ

∂σ

∂
yz

∂ t

)
.

On substitution of these results the left-hand side of (B.2) can be expressed in terms of partial
derivatives of y and 
yz as follows:

1

N0

∂Sm

∂σ
= −3

[
2
∂At(y, t)

∂ t
+
∂A(yz, t)

∂ t

]
∂y

∂σ
− 3

∂A(yz, t)

∂ t

∂
yz

∂σ

− TA

T0

∂y

∂σ

∂η1

∂ t
− 6t

σ

∂Asw

∂ t

∂y

∂ t
+

TA

T0

(
∂λ

∂ t

∂
yz

∂σ
− ∂λ

∂σ

∂
yz

∂ t

)

= −3v1
∂y

∂σ
+ (v1 − 2v2)

∂
yz

∂σ

− 6t

σ

∂A(yz, t)

∂ t

∂y

∂ t
− TA

T0

∂λ

∂ t

∂
yz

∂ t
. (B.8)
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It is also given in the form of the simple matrix expression

1

N0

∂Sm

∂σ
=

(
−6t

σ

∂Asw

∂ t
, − TA

T0

∂λ

∂σ

)
M−1

( −v1

v2

)

−
(
v1,

v1 − 2v2

3

)
M−1

( − TAσ

2T0
+ 6t
σ

∂ Asw
∂ t

TAσ
4T0

− 3t
σ

∂ Asw
∂ t + 3TA

2T0

∂λ
∂σ

)
.

Let us next introduce two parameters V1 and V2 by

1

N0

∂Sm

∂σ
= v1V1 + v2V2, (B.9)

then they are evaluated explicitly as follows:

V1 = TAσ

2T0
( 1, 1/3 )M−1

(
1

−1/2

)

+
3t

σ

∂Asw

∂ t

[
(−2, 0 )M−1

( −1
0

)
− ( 1, 1/3 )M−1

(
2

−1

)]

+
TA

T0

∂λ

∂σ

[
( 0, −1 )M−1

( −1
0

)
− ( 1, 1/3 )M−1

(
0

3/2

)]

= TAσ

2T0

(
m11 +

m12

3
− m12

2
+

m22

6

)
+

3t

σ

∂Asw

∂ t

(
m12 − 2m21

3
+

m22

3

)

+
TA

T0

∂λ

∂σ

(
−3m12

2
+ m21 +

m22

2

)
= TAσ

2T0
m11

V2 = − TAσ

2T0
( 0, −2/3 )M−1

( −1
1/2

)

+
3t

σ

∂Asw

∂ t

[
(−2, 0 )M−1

(
0
1

)
− ( 0, −2/3 )M−1

(
2

−1

)]

+
TA

T0

∂λ

∂σ

[
− ( 0, 1 )M−1

(
0
1

)
− ( 0, −2/3 )M−1

(
0

3/2

)]

= − TAσ

2T0
m12.

Note the following identity for the inverse matrix elements:

3m12/2 − m21 + m22/2 = 0.

If we finally compare the following result with (B.6),

1

N0

∂Sm

∂σ
= TAσ

2T0
(v1m11 − v2m12)

the Maxwell relation is verified.
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